Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830457

RESUMO

Heterodera schachtii is a well-known cyst nematode that causes serious economic losses in sugar beet production every year. Rapid and visual detection of H. schachtii is essential for more effective prevention and control. In this study, a species-specific recombinase polymerase amplification (RPA) primer was designed from a specific H. schachtii sequence-characterized amplified region (SCAR) marker. A band was obtained in reactions with DNA from H. schachtii, but absent from nontarget cyst nematodes. The RPA results could be observed by the naked eye, using a lateral flow dipstick (LFD). Moreover, we combined CRISPR technology with RPA to identify positive samples by fluorescence detection. Sensitivity analysis indicated that 10-4 single cysts and single females, 4-3 single second-stage juveniles, and a 0.001 ng genomic DNA template could be detected. The sensitivity of the RPA method for H. schachtii detection is not only higher than that of PCR and qPCR, but can also provide results in <1 h. Consequently, the RPA assay is a practical and useful diagnostic tool for early diagnosis of plant tissues infested by H. schachtii. Sugar beet nematodes were successfully detected in seven of 15 field sugar beet root samples using the RPA assay. These results were consistent with those achieved by conventional PCR, indicating 100% accuracy of the RPA assay in field samples. The RPA assay developed in the present study has the potential for use in the direct detection of H. schachtii infestation in the field.


Assuntos
Proteínas de Bactérias/genética , Beta vulgaris/parasitologia , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases/genética , Tylenchoidea/isolamento & purificação , Animais , Beta vulgaris/genética , Técnicas de Amplificação de Ácido Nucleico , Recombinases/química , Recombinases/genética , Tylenchoidea/genética , Tylenchoidea/patogenicidade
2.
Nat Commun ; 12(1): 3380, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099714

RESUMO

Plant-parasitic nematodes (PPNs) are economically important pests of agricultural crops, and soybean cyst nematode (SCN) in particular is responsible for a large amount of damage to soybean. The need for new solutions for controlling SCN is becoming increasingly urgent, due to the slow decline in effectiveness of the widely used native soybean resistance derived from genetic line PI 88788. Thus, developing transgenic traits for controlling SCN is of great interest. Here, we report a Bacillus thuringiensis delta-endotoxin, Cry14Ab, that controls SCN in transgenic soybean. Experiments in C. elegans suggest the mechanism by which the protein controls nematodes involves damaging the intestine, similar to the mechanism of Cry proteins used to control insects. Plants expressing Cry14Ab show a significant reduction in cyst numbers compared to control plants 30 days after infestation. Field trials also show a reduction in SCN egg counts compared with control plants, demonstrating that this protein has excellent potential to control PPNs in soybean.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Produtos Agrícolas/parasitologia , Resistência à Doença/genética , Endotoxinas/genética , Glycine max/parasitologia , Proteínas Hemolisinas/genética , Tylenchoidea/patogenicidade , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Bioensaio , Caenorhabditis elegans , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Endotoxinas/metabolismo , Feminino , Engenharia Genética , Proteínas Hemolisinas/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/isolamento & purificação
3.
J Helminthol ; 90(1): 28-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319213

RESUMO

Meloidogyne hispanica (Mhi) is a difficult-to-control polyphagous root-knot nematode (RKN) species of emerging importance for economically valuable crops. Nematode secretions are likely to be the first signals perceived by the plant and are thought to be involved in various aspects of the plant-nematode interaction. The aims of this work were to identify and characterize M. hispanica parasitism genes: cathepsin L cysteine protease (cpl-1), calreticulin (crt-1), ß-1,4-endoglucanase-1 (eng-1) and manganese superoxide dismutase (mnsod). As there are no genomic data available for M. hispanica, primers were designed from the conserved regions of the putative parasitism genes in M. incognita and M. hapla and used to amplify the genes in M. hispanica, which led to the successful amplification of these genes in M. hispanica. Partial gene sequences were also obtained for M. arenaria, M. hapla, M. hispanica, M. incognita and M. javanica cpl-1, crt-1, eng-1 and mnsod genes, and their phylogenetic relationship analysed. In order to determine whether these genes are differentially expressed during M. hispanica development, cDNA was amplified from mRNA isolated from eggs, second-stage juveniles (J2) and females. Amplification products were observed from cDNA of all developmental stages for the Mhi-cpl-1 and Mhi-crt-1 genes. However, the gene Mhi-crt-1 exhibited intense amplification bands in females, while the Mhi-eng-1 gene was equally amplified in eggs and J2 and the Mhi-mnsod gene was only expressed in eggs. In comparison to the other RKN species, the genes Mhi-eng-1 and Mhi-mnsod showed transcription in different nematode developmental stages.


Assuntos
Proteínas de Helminto/genética , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Tylenchoidea/genética , Tylenchoidea/isolamento & purificação , Animais , Feminino , Proteínas de Helminto/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/parasitologia , Plantas/parasitologia , Tylenchoidea/classificação
4.
Zootaxa ; 3893(3): 429-37, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25544531

RESUMO

A survey was performed to detect the presence of cyst nematodes in the Cape Floristic Region of South Africa. Soil was collected in the rhizosphere of the dominant plant species within blocks of indigenous vegetation and cysts were extracted from them. A total of 81 blocks of indigenous vegetation were sampled as described. Cysts were detected in 7 of these samples, representing 6 different vegetation types. One set of primers was used to amplify the ITS regions from these cysts, including the 5.8S ribosomal gene, as well as short parts of the 18S and 28S ribosomal genes. ITS-rDNA sequences from the indigenous isolates were aligned with selected sequences of other species from the Heteroderidae. Phylogenetic analyses to resolve the relationships between indigenous isolates and selected representatives of the Heteroderidae were conducted using the Maximum Parsimony method. The consensus tree resulting from alignment of the circumfenestrate cysts revealed that isolates SK18, WK1 and WK26 are included in a clade of Globodera species that parasitise non-solanaceous plants, forming a monophyletic group with G. millefolii, G. artemisiae, and an unidentified Globodera sp. from Portugal. In a tree resulting from the alignment of the Heterodera spp., isolates OK14 and WK2 are included in the Afenestrata group, forming a monophyletic group with H. orientalis.This survey unearthed at least four potentially new species of cyst nematodes, which may prove invaluable for the study of the evolution and biogeography of the group.


Assuntos
Tylenchoidea/classificação , Distribuição Animal , Animais , DNA de Helmintos/genética , DNA Ribossômico/genética , Feminino , Masculino , Filogenia , Solo/parasitologia , África do Sul , Tylenchoidea/genética , Tylenchoidea/isolamento & purificação , Tylenchoidea/fisiologia
5.
Phytopathology ; 104(7): 749-61, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24915429

RESUMO

Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis, and inaccessible DNA in resistant life stages. Identification of the sources of error allows us to suggest ways to improve identification using ecometagenetics.


Assuntos
Nematoides/isolamento & purificação , Doenças das Plantas/parasitologia , Solo/parasitologia , Animais , Primers do DNA/genética , DNA de Helmintos/química , DNA de Helmintos/genética , Metagenômica , Nematoides/genética , Raízes de Plantas/parasitologia , Plantas/parasitologia , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Tylenchoidea/genética , Tylenchoidea/isolamento & purificação
6.
J Helminthol ; 88(3): 349-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23635519

RESUMO

Protease activities in preparations from the plant-parasitic nematodes Heterodera glycines and Meloidogyne incognita and the free-living nematode Panagrellus redivivus were inhibited by exposure to a series of eight catechin polyphenol analogues, (+)-catechin, (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG) (1 mm each), and by a preparation from H. glycines cysts. General protease activity detected with the FRET-peptide substrate QXL520-KSAYMRF-K(5-FAM)a and proteasome chymotrypsin-like (CTL) activity detected with succinyl-LLVY-AMC were each inhibited significantly more (P < 0.05) by the gallated form of the polyphenol than by the corresponding non-gallated form. Species differences in response to inhibition across all analogues were revealed with the CTL substrate, but CG was a consistently potent inhibitor across all three species and with each substrate. A heat-stable component (CE) from H. glycines cysts inhibited M. incognita CTL activity by 92.07 ± 0.68%, significantly less (P < 0.05) in H. glycines (52.86 ± 2.77%), and by only 17.24 ± 0.55% (P < 0.05) in P. redivivus preparations. CTL activity was, however, inhibited more than 60% in all preparations by the proteasome-specific inhibitor MG-132. Hatching of M. incognita infective juveniles exposed to 1 mm CG, ECG, GCG or EGCG was reduced by 83.88 ± 4.26%, 69.98 ± 9.14%, 94.93 ± 1.71% and 87.93 ± 2.89%, respectively, while hatching of H. glycines was reduced less than 25% by each analogue. CE had no effect on nematode hatch, but did cause a 60% reduction in mobility of H. glycines infective juveniles exposed overnight to CE in vitro, which was more (P < 0.05) than the reduction of M. incognita infective juvenile mobility (20%).


Assuntos
Anti-Helmínticos/farmacologia , Catequina/farmacologia , Peptídeo Hidrolases/análise , Polifenóis/farmacologia , Inibidores de Proteases/farmacologia , Rabditídios/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Animais , Anti-Helmínticos/isolamento & purificação , Catequina/isolamento & purificação , Locomoção/efeitos dos fármacos , Polifenóis/isolamento & purificação , Inibidores de Proteases/isolamento & purificação , Rabditídios/enzimologia , Rabditídios/fisiologia , Tylenchoidea/enzimologia , Tylenchoidea/isolamento & purificação , Tylenchoidea/fisiologia
7.
Phytopathology ; 103(11): 1092-102, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23777404

RESUMO

Root-knot nematodes (Meloidogyne spp.) represent one of the most polyphagous genera of plant-parasitic nematodes. To date, close to 100 valid species are recognized. In contrast to the size of the genus, the majority of past research focused on a small number of species, i.e., the so-called 'major' species M. arenaria, M. hapla, M. incognita, and M. javanica. This review highlights recent work aimed at 'minor' root-knot nematodes: M. chitwoodi, M. fallax, M. minor, M. enterolobii (=M. mayaguensis), M. exigua, and M. paranaensis. Some of these species have been described only recently. After a brief profile of each species, identification methods and their application in Meloidogyne spp. are summarized. Intraspecific variation and its impact on plant resistance breeding are discussed and interactions between M. enterolobii and Fusarium solani are highlighted as an example of synergistic interactions with other plant pathogens. Future research on Meloidogyne spp. is not only shaped by recent breakthroughs such as completing the genome sequences of M. hapla and M. incognita, but is also influenced by changes in agriculture. Taken together, the aim of this review is to draw attention to previously neglected and newly described Meloidogyne spp. that are developing into major problems for agriculture in tropical and temperate climates.


Assuntos
Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Plantas/parasitologia , Tylenchoidea/isolamento & purificação , Animais , Cruzamento , Produtos Agrícolas , Resistência à Doença , Fusarium/fisiologia , Variação Genética , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Plantas/genética , Plantas/imunologia , Quarentena , Especificidade da Espécie , Tylenchoidea/genética , Tylenchoidea/fisiologia
8.
J Vis Exp ; (61)2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22434014

RESUMO

Root-knot nematodes (genus Meloidogyne) are obligate plant parasites. They are extremely polyphagous and considered one of the most economically important plant parasitic nematodes. The microscopic second-stage juvenile (J2), molted once in the egg, is the infective stage. The J2s hatch from the eggs, move freely in the soil within a film of water, and locate root tips of suitable plant species. After penetrating the plant root, they migrate towards the vascular cylinder where they establish a feeding site and initiate feeding using their stylets. The multicellular feeding site is comprised of several enlarged multinuclear cells called 'giant cells' which are formed from cells that underwent karyokinesis (repeated mitosis) without cytokinesis. Neighboring pericycle cells divide and enlarge in size giving rise to a typical gall or root knot, the characteristic symptom of root-knot nematode infection. Once feeding is initiated, J2s become sedentary and undergo three additional molts to become adults. The adult female lays 150-250 eggs in a gelatinous matrix on or below the surface of the root. From the eggs new infective J2s hatch and start a new cycle. The root-knot nematode life cycle is completed in 4-6 weeks at 26-28°C. Here we present the traditional protocol to infect plants, grown in pots, with root-knot nematodes and two methods for high-throughput assays. The first high-throughput method is used for plants with small seeds such as tomato while the second is for plants with large seeds such as cowpea and common bean. Large seeds support extended seedling growth with minimal nutrient supplement. The first high throughput assay utilizes seedlings grown in sand in trays while in the second assay plants are grown in pouches in the absence of soil. The seedling growth pouch is made of a 15.5 x 12.5cm paper wick, folded at the top to form a 2-cm-deep trough in which the seed or seedling is placed. The paper wick is contained inside a transparent plastic pouch. These growth pouches allow direct observation of nematode infection symptoms, galling of roots and egg mass production, under the surface of a transparent pouch. Both methods allow the use of the screened plants, after phenotyping, for crossing or seed production. An additional advantage of the use of growth pouches is the small space requirement because pouches are stored in plastic hanging folders arranged in racks.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Doenças das Plantas/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Animais , Fabaceae/crescimento & desenvolvimento , Fabaceae/parasitologia , Feminino , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/isolamento & purificação
9.
Phytopathology ; 102(2): 140-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21942733

RESUMO

Potato cyst nematodes (PCNs) are quarantine organisms, and they belong to the economically most relevant pathogens of potato worldwide. Methodologies to assess the viability of their cysts, which can contain 200 to 500 eggs protected by the hardened cuticle of a dead female, are either time and labor intensive or lack robustness. We present a robust and cost-efficient viability assay based on loss of membrane integrity upon death. This assay uses trehalose, a disaccharide present at a high concentration in the perivitelline fluid of PCN eggs, as a viability marker. Although this assay can detect a single viable egg, the limit of detection for regular field samples was higher, ≈10 viable eggs, due to background signals produced by other soil components. On the basis of 30 nonviable PCN samples from The Netherlands, a threshold level was defined (ΔA(trehalose) = 0.0094) below which the presence of >10 viable eggs is highly unlikely (true for ≈99.7% of the observations). This assay can easily be combined with a subsequent DNA-based species determination. The presence of trehalose is a general phenomenon among cyst nematodes; therefore, this method can probably be used for (for example) soybean, sugar beet, and cereal cyst nematodes as well.


Assuntos
Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Trealose/análise , Tylenchoidea/fisiologia , Animais , Membrana Celular/química , Análise Custo-Benefício , DNA de Helmintos/genética , DNA de Helmintos/isolamento & purificação , Feminino , Países Baixos , Óvulo/química , Contagem de Ovos de Parasitas , Raízes de Plantas/parasitologia , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Solo/parasitologia , Fatores de Tempo , Tylenchoidea/genética , Tylenchoidea/isolamento & purificação
10.
Phytopathology ; 101(11): 1270-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21770774

RESUMO

Meloidogyne incognita, M. enterolobii, and M. javanica are the most widespread species of root-knot nematodes in South China, affecting many economically important crops, ornamental plants, and fruit trees. In this study, one pair of Meloidogyne universal primers was designed and three pairs of species-specific primers were employed successfully to rapidly detect and identify M. incognita, M. enterolobii, and M. javanica by multiplex polymerase chain reaction (PCR) using DNA extracted from individual galls. Multiplex PCR from all M. incognita, M. enterolobii, and M. javanica isolates generated two fragments of ≈500 and 1,000, 500 and 200, and 500 and 700 bp, respectively. The 500-bp fragment is the internal positive control fragment of rDNA 28S D2/D3 resulting from the use of the universal primers. Other Meloidogyne spp. included in this study generated only one fragment of ≈500 bp in size. Using this approach, M. incognita, M. enterolobii, and M. javanica were identified and detected using DNA extracted directly from individual galls containing the Meloidogyne spp. at various stages of their life cycle. Moreover, the percentage of positive PCR amplification increased with nematode development and detection was usually easy after the late stage of the second-stage juvenile. The protocol was applied to galls from naturally infested roots and the results were found to be fast, sensitive, robust, and accurate. This present study is the first to provide a definitive diagnostic tool for M. incognita, M. enterolobii, and M. javanica using DNA extracted directly from individual galls using a one-step multiplex PCR technique.


Assuntos
Cucumis sativus/parasitologia , Ipomoea/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Tumores de Planta/parasitologia , Solanum lycopersicum/parasitologia , Tylenchoidea/isolamento & purificação , Animais , Primers do DNA/genética , DNA de Helmintos/genética , DNA de Helmintos/isolamento & purificação , Variação Genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Análise de Sequência de DNA , Especificidade da Espécie , Tylenchoidea/classificação , Tylenchoidea/genética
11.
Parazitologiia ; 42(6): 510-6, 2008.
Artigo em Russo | MEDLINE | ID: mdl-19198175

RESUMO

Nematode community structure of the potato fields with different infection levels of potato cyst-forming nematode (PCN) such as 10, 30 and 214 cysts per 100 g of soil has been investigated. The influence of specialized parasite on nematode fauna and dominance character of different ecological-trophic groups were described. Parasitic nematode genera in natural meadow biocenosis and agrocenoses without PCN are Paratylenchus, Tylenchorhynchus, and Helicotylenchus. It is established, that Paratylenchus nanus was the prevalent species among plant parasites at low infection level. Larvae of Globodera prevailed in the soil with middle and high infection levels and substituted individuals of other genera of parasitic nematodes. The fact of increase in number of hyphal-feeding nematode Aphelenchus avenae was revealed.


Assuntos
Doenças das Plantas/parasitologia , Tubérculos/parasitologia , Solo/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/classificação , Animais , Jardinagem , Contagem de Ovos de Parasitas , Tylenchoidea/isolamento & purificação
12.
Mol Ecol ; 9(9): 1223-32, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10972762

RESUMO

Cyst and root-knot nematodes show high levels of gross morphological similarity. This presents difficulties for the study of their ecology in natural ecosystems. In this study, cyst and root-knot nematode species, as well as some ectoparasitic nematode species, were identified using the second internal transcribed spacer (ITS2) sequence variation detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP). The ITS2 region was sufficiently variable within the taxa investigated to allow species to be separated on the basis of minor sequence variation. The PCR primers used in this study were effective for 12 species with three genera within the Heteroderinae (Globodera pallida, G. rostochiensis, Heterodera arenaria/avenae, H. ciceri, H. daverti, H. hordecalis, H. mani, H. schachtii, H. trifolii, Meloidogyne ardenensis, M. duytsi and M. maritima). However, pathotypes of Globodera pallida and G. rostochiensis could not be distinguished. The method was tested at two coastal dune locations in The Netherlands (one in the lime-poor dunes of the north and one in calcareous dunes of the south) to determine the population structure of cyst nematodes. At each site, cyst nematodes were associated with three plant species: two plant species on the foredune (Elymus farctus and Ammophila arenaria) and one plant species occurring further inland (Calamagrostis epigejos). Two species of cyst nematodes, H. arenaria and H. hordecalis, were found. H. arenaria associated with vigorous A. arenaria and H. hordecalis in association with degenerating A. arenaria and C. epigejos. The field survey demonstrated that in coastal dunes abiotic factors may be the important affecting the distribution of cyst nematodes.


Assuntos
Tylenchoidea/genética , Animais , Sequência de Bases , Primers do DNA/genética , DNA de Helmintos/genética , Ecossistema , Variação Genética , Filogenia , Plantas/parasitologia , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Tylenchoidea/classificação , Tylenchoidea/isolamento & purificação
13.
Int J Syst Evol Microbiol ; 50 Pt 2: 605-613, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10758866

RESUMO

A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.


Assuntos
Glycine max/parasitologia , Bactérias Gram-Positivas Formadoras de Endosporo/classificação , Bactérias Gram-Positivas Formadoras de Endosporo/genética , Filogenia , RNA Ribossômico 16S/genética , Tylenchoidea/microbiologia , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Bactérias Gram-Positivas Formadoras de Endosporo/fisiologia , Dados de Sequência Molecular , América do Norte , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Esporos Bacterianos/fisiologia , Tylenchoidea/isolamento & purificação , Tylenchoidea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA